语文教案】[幼教][一年级][二年级][三年级][四年级][五年级][六年级][七年级][八年级][九年级][综合性学习][高一][高二][高三][教学参考][教学宝典][电子教材][阅读指导]
数学教案】[幼教][一年级][二年级][三年级][四年级][五年级][六年级][七年级][八年级][九年级][高一][高二][高三]【物理教案】[八年级][九年级][高一][高二][高三]
英语教案】[幼教][一年级][二年级][三年级][四年级][五年级][六年级][七年级][八年级][九年级][高一][高二][高三]【化学教案】[九年级][高一][高二][高三]
政治教案】[幼教][小学思品][七年级][八年级][九年级][高一][高二][高三]【历史教案】[七年级][八年级][九年级][高一][高二][高三]
地理教案】[七年级][八年级][九年级][高中地理][高一][高二][高三]【生物教案】[小学自然][七年级][八年级][九年级][高中][高一][高二][高三]
音乐教案】[幼教][小学][初中][高中]【体育教案】[幼教][小学][初中][高中]【美术教案】[幼教][小学][初中][高中]
信息教案】[小学信息技术][初中信息技术][高中信息技术]【班会教案】[小学班会][中学班会][国旗下讲话][学生评语][班级管理][德育研究][心理健康][班主任挚友]
您现在的位置: 3edu教育网 >> 海量教案 >> 数学教案 >> 高三数学教案 >> 正文    3edu教育网,教育第三方,完全免费,天天更新!

一般数列的通项公式考点总结

分类:高三数学教案   更新:2017/6/17   来源:网络

  一般数列的定义:

  如果数列{an}的第n项an与序号n之间的关系可以用一个式子表示成an=f(n),那么这个公式叫做这个数列的通项公式。

  通项公式的求法:

  (1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;

  (2)构造等差数列:递推式不能构造等比数列时,构造等差数列;

  (3)递推:即按照后项和前项的对应规律,再往前项推写对应式,高考数学

  已知递推公式求通项常见方法:

  ①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数λ,使an+1+λ=q(an+λ)进而得到λ。

  ②已知a1=a,an=an-1+f(n)(n≥2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)的方法。

  ③已知a1=a,an=f(n)an-1(n≥2),求an时,利用累乘法求解。

| 设为首页 | 加入收藏 | 联系我们 | 版权申明 | 隐私策略 | 关于我们 | 手机3edu | 返回顶部 |