您现在的位置: 3edu教育网 >> 海量教案 >> 数学教案 >> 高二数学教案 >> 正文    3edu教育网,百万资源,完全免费,无需注册,天天更新!

1.12瞬时变化率—导数

1.12瞬时变化率—导数

分类:高二数学教案   更新:2013/1/21   来源:网友提供

1.12瞬时变化率—导数

设x1-x0=△x,则x1=△x+x0,∴当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当△x无限趋近于0时,无限趋近点Q处切线斜率。2、曲线上任一点(x

    设x1-x0=△x,则x1 =△x+x0, ∴ 当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当△x无限趋近于0时, 无限趋近点Q处切线斜率。 2、曲线上任一点(x0,f(x0))切线斜率的求法:
    ,当△x无限趋近于0时,k值即为(x0,f(x0))处切线的斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: (3)瞬时速度:当无限趋近于0 时, 无限趋近于一个常数,这个常数称为t=t0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量 和位置改变量 2.再求平均速度 3.后求瞬时速度:当 无限趋近于0, 无限趋近于常数v为瞬时速度 (4)速度的平均变化率: (5)瞬时加速度:当 无限趋近于0 时, 无限趋近于一个常数,这个常数称为t=t0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率 三、数学应用
    例1、已知f(x)=x2,求曲线在x=2处的切线的斜率。 变式:1.求 过点(1,1)的切线方程 2.曲线y=x3在点P处切线斜率为k,当k=3时,P点的坐标为_________ 3.已知曲线 上的一点P(0,0)的切线斜率是否存在?
    例2.一直线运动的物体,从时间 到 时,物体的位移为 ,那么 为(      )
    A.从时间 到 时,物体的平均速度; B.在 时刻时该物体的瞬时速度;  
    C.当时间为 时物体的速度;           D.从时间 到 时物体的平均速度
    例3.自由落体运动的位移s(m)与时间t(s)的关系为s= (1)求t=t0s时的瞬时速度    (2)求t=3s时的瞬时速度 (3)求t=3s时的瞬时加速度
    点评:求瞬时速度,也就转化为求极限,瞬时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景

| 设为首页 | 加入收藏 | 联系我们 | 版权申明 | 隐私策略 | 关于我们 | 手机3edu | 返回顶部 |