您现在的位置: 3edu教育网 >> 海量教案 >> 数学教案 >> 高一数学教案 >> 正文    3edu教育网,百万资源,完全免费,无需注册,天天更新!

高一数学集合的概念教学设计

高一数学集合的概念教学设计

分类:高一数学教案   更新:2013/1/21   来源:网友提供

高一数学集合的概念教学设计

在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学

    在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
    把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
    本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
    这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
    集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明
    教学过程:
    一、复习引入:
    1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
    2.教材中的章头引言;
    3.集合论的创始人——康托尔(德国数学家)(见附录);
    4.“物以类聚”,“人以群分”;
    5.教材中例子(P4)
    二、讲解新课:  
    阅读教材第一部分,问题如下:
    (1)有那些概念?是如何定义的?
    (2)有那些符号?是如何表示的?
    (3)集合中元素的特性是什么?
    (一)集合的有关概念:
    由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
    定义:一般地,某些指定的对象集在一起就成为一个集合.
    1、集合的概念
    (1)集合:某些指定的对象集在一起就形成一个集合(简称集)
    (2)元素:集合中每个对象叫做这个集合的元素
    2、常用数集及记法
    (1)非负整数集(自然数集):全体非负整数的集合 记作N,
    (2)正整数集:非负整数集内排除0的集 记作N*或N+
    (3)整数集:全体整数的集合 记作Z ,
    (4)有理数集:全体有理数的集合 记作Q ,
    (5)实数集:全体实数的集合 记作R
    注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括
    数0
    (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它
    数集内排除0的集,也是这样表示,例如,整数集内排除0
    的集,表示成Z*
    3、元素对于集合的隶属关系
    (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
    (2)不属于:如果a不是集合A的元素,就说a不属于A,记作
    4、集合中元素的特性
    (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,
    或者不在,不能模棱两可
    (2)互异性:集合中的元素没有重复
    (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
    5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
    元素通常用小写的拉丁字母表示,如a、b、c、p、q……
    ⑵“∈”的开口方向,不能把a∈A颠倒过来写
    三、练习题:
    1、教材P5练习1、2
    2、下列各组对象能确定一个集合吗?
    (1)所有很大的实数 (不确定)
    (2)好心的人        (不确定)
    (3)1,2,2,3,4,5.(有重复)
    3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
    4、由实数x,-x,|x|, 所组成的集合,最多含(  A  )
    (A)2个元素  (B)3个元素  (C)4个元素  (D)5个元素
    5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:
    (1) 当x∈N时, x∈G; 
    (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G
    证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,
    则x= x+0* = a+b ∈G,即x∈G
    证明(2):∵x∈G,y∈G,
    ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
    ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
    ∵a∈Z, b∈Z,c∈Z, d∈Z
    ∴(a+c) ∈Z, (b+d) ∈Z
    ∴x+y =(a+c)+(b+d)  ∈G,
    又∵ =
    且 不一定都是整数,
    ∴ = 不一定属于集合G
    四、小结:本节课学习了以下内容:
    1.集合的有关概念:(集合、元素、属于、不属于)
    2.集合元素的性质:确定性,互异性,无序性
    3.常用数集的定义及记法
    五、课后作业:
    六、板书设计(略)
    七、课后记:
    八、附录:康托尔简介
    发疯了的数学家康托尔(Georg Cantor,1845-1918)是德国数学家,集合论的创始者
    1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷
    康托尔11岁时移居德国,在德国读中学
    1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期
    1867年以数论方面的论1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授
    由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度
    在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战
    他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应
    这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列E~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image001.emz">
    康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂
    有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”
    来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院
    真金不怕火炼,康托尔的思想终于大放光彩
    1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作
    ”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦
    1918年1月6日,康托尔在一家精神病院去世
    集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣
    康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础
    康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础
    从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论
    克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀
    他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久
    他甚至在柏林大学的学生面前公开攻击康托尔
    横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位
    使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折
    法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个E~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image001.emz">
    集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了
    德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾
    菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想
    数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交
    从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去
    变得很自卑,甚至怀疑自己的工作是否可靠
    他请求哈勒大学当局把他的数学教授职位改为哲学教授职位
    健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世
    流星埃.伽罗华(E.Galois,1811-1832),法国数学家
    伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题
    许多数学家为之耗去许多精力,但都失败了
    直到1770年,法国数学家拉格朗日对上述问题的研
    究才算迈出重要的一步 伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题 他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上 同时创立了具有划时代意义的数学分支——群论,数学发展史上作出了重大贡献 1829年,他把关于群论研究所初步结果的第一批论科学院委托当时法国最杰出的数学家柯西作为这些论在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会 然而,第二周当柯西向科学院宣读他自己的一篇论1830年2月,伽罗华将他的研究成果比较详细地写成论以参加科学院的数学大奖评选,论1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论这篇论当时的数学家S.K.泊松为了理解这篇论尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它 1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类 1832年5月31日离开了人间 死因参加无意义的决斗受重伤 1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》

| 设为首页 | 加入收藏 | 联系我们 | 版权申明 | 隐私策略 | 关于我们 | 手机3edu | 返回顶部 |