您现在的位置: 3edu教育网 >> 海量教案 >> 数学教案 >> 九年级数学教案 >> 正文    3edu教育网,百万资源,完全免费,无需注册,天天更新!

22.2.4 判别一元二次方程根的情况

22.2.4 判别一元二次方程根的情况

分类:九年级数学教案   更新:2013/1/19   来源:网友提供

22.2.4 判别一元二次方程根的情况

教学内容用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.教学目标掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.通过复习用配方法解一元二次方程的b

教学内容
    用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.

    教学目标
    掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.
    通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目.

    重难点关键
    1.重点:b2-4ac>0   一元二次方程有两个不相等的实根;b2-4ac=0   一元二次方程有两个相等的实数;b2-4ac<0   一元二次方程没有实根.
    2.难点与关键
    从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.

    教学过程
    一、复习引入

    (学生活动)用公式法解下列方程.
    (1)2x2-3x=0    (2)3x2-2   x+1=0    (3)4x2+x+1=0
    老师点评,(三位同学到黑板上作)老师只要点评(1)b2-4ac=9>0,有两个不相等的实根;(2)b2-4ac=12-12=0,有两个相等的实根;(3)b2-4ac=│-4×4×1│=<0,方程没有实根

    二、探索新知
    从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:
    求根公式:x=   ,当b2-4ac>0时,根据平方根的意义,   等于一个具体数,所以一元一次方程的x1=   ≠x1=   ,即有两个不相等的实根.当b2-4ac=0时,根据平方根的意义   =0,所以x1=x2=   ,即有两个相等的实根;当b2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.
    因此,(结论)(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1=   ,x2=  
    (2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=  
    (3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.

    例1.不解方程,判定方程根的情况
    (1)16x2+8x=-3    (2)9x2+6x+1=0
    (3)2x2-9x+8=0    (4)x2-7x-18=0
    分析:不解方程,判定根的情况,只需用b-4ac的值大于0、小于0、等于0的情况进行分析即可.
    解:(1)化为16x2+8x+3=0
    这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0
    所以,方程没有实数根.
    (2)a=9,b=6,c=1,
    b2-4ac=36-36=0,
    ∴方程有两个相等的实数根.
    (3)a=2,b=-9,c=8
    b2-4ac=(-9)2-4×2×8=81-64=17>0
    ∴方程有两个不相等的实根.
    (4)a=1,b=-7,c=-18
    b2-4ac=(-7)2-4×1×(-18)=121>0
    ∴方程有两个不相等的实根.

    巩固练习
    不解方程判定下列方程根的情况:
    (1)x2+10x+26=0        (2)x2-x-   =0
    (3)3x2+6x-5=0         (4)4x2-x+   =0
    (5)x2-   x-   =0    (6)4x2-6x=0
    (7)x(2x-4)=5-8x

    应用拓展
    例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
    分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.
    解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.
    ∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0
    a<-2
    ∵ax+3>0即ax>-3
    ∴x<-  
    ∴所求不等式的解集为x<-  

    归纳小结
    本节课应掌握:
    b2-4ac>0   一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0    一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0   一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用.

   作业:
    一、选择题

    1.以下是方程3x2-2x=-1的解的情况,其中正确的有(  ).
    A.∵b2-4ac=-8,∴方

[1] [2] 下一页

| 设为首页 | 加入收藏 | 联系我们 | 版权申明 | 隐私策略 | 关于我们 | 手机3edu | 返回顶部 |