语文教案】[幼教][一年级][二年级][三年级][四年级][五年级][六年级][七年级][八年级][九年级][综合性学习][高一][高二][高三][教学参考][教学宝典][电子教材][阅读指导]
数学教案】[幼教][一年级][二年级][三年级][四年级][五年级][六年级][七年级][八年级][九年级][高一][高二][高三]【物理教案】[八年级][九年级][高一][高二][高三]
英语教案】[幼教][一年级][二年级][三年级][四年级][五年级][六年级][七年级][八年级][九年级][高一][高二][高三]【化学教案】[九年级][高一][高二][高三]
政治教案】[幼教][小学思品][七年级][八年级][九年级][高一][高二][高三]【历史教案】[七年级][八年级][九年级][高一][高二][高三]
地理教案】[七年级][八年级][九年级][高中地理][高一][高二][高三]【生物教案】[小学自然][七年级][八年级][九年级][高中][高一][高二][高三]
音乐教案】[幼教][小学][初中][高中]【体育教案】[幼教][小学][初中][高中]【美术教案】[幼教][小学][初中][高中]
信息教案】[小学信息技术][初中信息技术][高中信息技术]【班会教案】[小学班会][中学班会][国旗下讲话][学生评语][班级管理][德育研究][心理健康][班主任挚友]
您现在的位置: 3edu教育网 >> 海量教案 >> 数学教案 >> 八年级数学教案 >> 正文    3edu教育网,教育第三方,完全免费,天天更新!

一元二次方程的定义知识点总结

分类:八年级数学教案   更新:2017/8/11   来源:网络

  定义:

  只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

  一元二次方程的一般形式:

  它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

  方程特点;

  (1)该方程为整式方程。

  (2)该方程有且只含有一个未知数。

  (3)该方程中未知数的最高次数是2。

  判断方法:

  要判断一个方程是否为一元二次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为(a≠0)的形式,则这个方程就为一元二次方程。

  点拨:

  ①“a≠0”是一元二次方程的一般形式的重要组成部分,当a=0,b≠0时,她就成为一元一次方程了。反之,如果明确了

  是一元二次方程,就隐含了a≠0这个条件;

  ②任何一个一元二次方程, 经过整理都能化成一般形式,在判断一个方程是不是一元二次方程时,首先化成一般形式,再判断;

  ③二次项系数、一次项系数和常数项都是在一般形式下定义的,所以咋确定一元二次方程各项的系数时,应首先将方程化为一般形式;

  ④项的系数包括它前面的符号。如:x2+5x+3=0的一次项系数是5,而不是5x;3x2+4x-1=0的常数项是-1而不是1;

  ⑤若一元二次方程化为一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项。

  1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

  求解方法

  1、直接开平方法

  利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如(x+a)2=b的一元二次方程。根据平方根的定义可知,x+a是b的平方根,

  2、配方法

  配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

  3、公式法

  公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

  一元二次方程ax2+bx+c=0(a≠0)的求根公式:

  公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

  4、因式分解法

  因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

  分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。

  (4)根与系数的关系的应用:

  ①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;

  ②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数。

  ③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于 和 的代数式的值,如

  ④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式。 一元二次方程的应用:方程是解决实际问题的有效模型和工具。利用方程解决。

  二。解一元二次方程应用题:

  它是列一元一次方程解应用题的拓展,解题方法是相同的。其一般步骤为:

  1.设:即适当设未知数(直接设未知数,间接设未知数),不要漏写单位名称,会用含未知数的代数式表示题目中涉及的量;

  2.列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;

  3.解:解所列方程,求出解来;

  4.验:一是检验是否为方程的解,二是检验是否为应用题的解;

  5答:怎么问就怎么答,注意不要漏写单位名称。

  常见考法

  (1)考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②已知两根或一根构造一元二次方

[1] [2] 下一页

| 设为首页 | 加入收藏 | 联系我们 | 版权申明 | 隐私策略 | 关于我们 | 手机3edu | 返回顶部 |